Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
ATS Sch ; 2(2): 278-286, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1365986

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic resulted in redeployment of non-critical care-trained providers to intensive care units across the world. Concurrently, traditional venues for delivery of medical education faced major disruptions. The need for a virtual forum to fill knowledge gaps for healthcare workers caring for patients with coronavirus disease (COVID-19) was apparent in the early stages of the pandemic. Objective: The weekly, open-access COVID-19 Critical Care Training Forum (CCCTF) organized by the American Thoracic Society (ATS) provided a global audience access to timely content relevant to their learning needs. The goals of the forum were threefold: to aid healthcare providers in assessment and treatment of patients with COVID-19, to reduce provider anxiety, and to disseminate best practices. Methods: The first 13 ATS CCCTF sessions streamed live from April to July 2020. Structured debriefs followed each session and participant feedback was evaluated in planning of subsequent sessions. A second set of 14 sessions streamed from August to November 2020. Content experts were recruited from academic institutions across the United States. Results: As of July 2020, the ATS CCCTF had 2,494 live participants and 7,687 downloads for a total of 10,181 views. The majority of participants had both completed training (58.6%) and trained in critical care (53.8%). Physicians made up a majority (82.2%) of the audience that spanned the globe (61% were international attendees). Conclusion: We describe the rapid and successful implementation of an open-access medical education forum to address training and knowledge gaps among healthcare personnel caring for patients with COVID-19.

2.
Nat Nanotechnol ; 16(9): 1039-1044, 2021 09.
Article in English | MEDLINE | ID: covidwho-1322483

ABSTRACT

Plasma SARS-CoV-2 RNA may represent a viable diagnostic alternative to respiratory RNA levels, which rapidly decline after infection. Quantitative PCR with reverse transcription (RT-qPCR) reference assays exhibit poor performance with plasma, probably reflecting the dilution and degradation of viral RNA released into the circulation, but these issues could be addressed by analysing viral RNA packaged into extracellular vesicles. Here we describe an assay approach in which extracellular vesicles directly captured from plasma are fused with reagent-loaded liposomes to sensitively amplify and detect a SARS-CoV-2 gene target. This approach accurately identified patients with COVID-19, including challenging cases missed by RT-qPCR. SARS-CoV-2-positive extracellular vesicles were detected at day 1 post-infection, and plateaued from day 6 to the day 28 endpoint in a non-human primate model, while signal durations for 20-60 days were observed in young children. This nanotechnology approach uses a non-infectious sample and extends virus detection windows, offering a tool to support COVID-19 diagnosis in patients without SARS-CoV-2 RNA detectable in the respiratory tract.


Subject(s)
COVID-19/diagnosis , Extracellular Vesicles/metabolism , Liposomes/therapeutic use , RNA, Viral/blood , SARS-CoV-2/isolation & purification , Animals , Biosensing Techniques , COVID-19/blood , COVID-19 Nucleic Acid Testing , Chlorocebus aethiops , Disease Models, Animal , HEK293 Cells , Humans , Kinetics , Liposomes/metabolism , RNA, Viral/genetics , SARS-CoV-2/genetics , Tetraspanin 28/immunology , Tetraspanin 28/metabolism
3.
Front Physiol ; 12: 649604, 2021.
Article in English | MEDLINE | ID: covidwho-1268279

ABSTRACT

Conventional smoking is known to both increase susceptibility to infection and drive inflammation within the lungs. Recently, smokers have been found to be at higher risk of developing severe forms of coronavirus disease 2019 (COVID-19). E-cigarette aerosol inhalation (vaping) has been associated with several inflammatory lung disorders, including the recent e-cigarette or vaping product use-associated lung injury (EVALI) epidemic, and recent studies have suggested that vaping alters host susceptibility to pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To assess the impact of vaping on lung inflammatory pathways, including the angiotensin-converting enzyme 2 (ACE2) receptor known to be involved in SARS-CoV-2 infection, mice were exposed to e-cigarette aerosols for 60 min daily for 1-6 months and underwent gene expression analysis. Hierarchical clustering revealed extensive gene expression changes occurred in the lungs of both inbred C57BL/6 mice and outbred CD1 mice, with 2,933 gene expression changes in C57BL/6 mice, and 2,818 gene expression changes in CD1 mice (>abs 1.25-fold change). Particularly, large reductions in IgA and CD4 were identified, indicating impairment of host responses to pathogens via reductions in immunoglobulins and CD4 T cells. CD177, facmr, tlr9, fcgr1, and ccr2 were also reduced, consistent with diminished host defenses via decreased neutrophils and/or monocytes in the lungs. Gene set enrichment (GSE) plots demonstrated upregulation of gene expression related to cell activation specifically in neutrophils. As neutrophils are a potential driver of acute lung injury in COVID-19, increased neutrophil activation in the lungs suggests that vapers are at higher risk of developing more severe forms of COVID-19. The receptor through which SARS-CoV-2 infects host cells, ACE2, was found to have moderate upregulation in mice exposed to unflavored vape pens, and further upregulation (six-fold) with JUUL mint aerosol exposure. No changes were found in mice exposed to unflavored Mod device-generated aerosols. These findings suggest that specific vaping devices and components of e-liquids have an effect on ACE2 expression, thus potentially increasing susceptibility to SARS-CoV-2. In addition, exposure to e-cigarette aerosols both with and without nicotine led to alterations in eicosanoid lipid profiles within the BAL. These data demonstrate that chronic, daily inhalation of e-cigarette aerosols fundamentally alters the inflammatory and immune state of the lungs. Thus, e-cigarette vapers may be at higher risk of developing infections and inflammatory disorders of the lungs.

4.
Diabetes Care ; 2020 Aug 25.
Article in English | MEDLINE | ID: covidwho-742671

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) mortality is high in patients with hypertension, obesity, and diabetes. We examined the association between hypertension, obesity, and diabetes, individually and clustered as metabolic syndrome (MetS), and COVID-19 outcomes in patients hospitalized in New Orleans during the peak of the outbreak. RESEARCH DESIGN AND METHODS: Data were collected from 287 consecutive patients with COVID-19 hospitalized at two hospitals in New Orleans, LA from 30 March to 5 April 2020. MetS was identified per World Health Organization criteria. RESULTS: Among 287 patients (mean age 61.5 years; female, 56.8%; non-Hispanic black, 85.4%), MetS was present in 188 (66%). MetS was significantly associated with mortality (adjusted odds ratio [aOR] 3.42 [95% CI 1.52-7.69]), intensive care unit (ICU) (aOR 4.59 [CI 2.53-8.32]), invasive mechanical ventilation (IMV) (aOR 4.71 [CI 2.50-8.87]), and acute respiratory distress syndrome (ARDS) (aOR 4.70 [CI 2.25-9.82]) compared with non-MetS. Multivariable analyses of hypertension, obesity, and diabetes individually showed no association with mortality. Obesity was associated with ICU (aOR 2.18 [CI, 1.25-3.81]), ARDS (aOR 2.44 [CI 1.28-4.65]), and IMV (aOR 2.36 [CI 1.33-4.21]). Diabetes was associated with ICU (aOR 2.22 [CI 1.24-3.98]) and IMV (aOR 2.12 [CI 1.16-3.89]). Hypertension was not significantly associated with any outcome. Inflammatory biomarkers associated with MetS, CRP, and lactate dehydrogenase (LDH) were associated with mortality (CRP [aOR 3.66] [CI 1.22-10.97] and LDH [aOR 3.49] [CI 1.78-6.83]). CONCLUSIONS: In predominantly black patients hospitalized for COVID-19, the clustering of hypertension, obesity, and diabetes as MetS increased the odds of mortality compared with these comorbidities individually.

5.
Obesity (Silver Spring) ; 28(10): 1798-1801, 2020 10.
Article in English | MEDLINE | ID: covidwho-693432

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) has disproportionately impacted the African American community. This study aims to identify the risk factors for severe COVID-19 disease in African American patients. METHODS: This was a retrospective cross-sectional analysis of African American patients with COVID-19 treated between March 12 and April 9, 2020, at a single tertiary center. The primary outcome of interest was severe disease defined as those requiring intensive care unit (ICU) admission. RESULTS: The study included 158 consecutive patients. The mean age was 57 years, and 61% were women. The mean (SD) of BMI was 33.2 (8.6) kg/m2 . Overall, patients admitted to the ICU were older (62 vs. 55 years, P = 0.003) and had higher BMI (36.5 kg/m2 vs. 31.9 kg/m2 , P = 0.002). In unadjusted and adjusted analysis, the factors most associated with ICU admission in this sample were age (adjusted odds ratio [aOR]: 1.073; 95% CI: 1.033-1.114), BMI (aOR: 1.115; 95% CI: 1.052-1.182), and lung disease (aOR: 3.097; 95% CI: 1.137-8.437). CONCLUSIONS: This study identified risk factors for severe disease in COVID-19, specifically in an African American population. Further inclusive research aimed at optimizing clinical care relevant to the African American population is critical to ensure an equitable response to COVID-19.


Subject(s)
Betacoronavirus , Black or African American/statistics & numerical data , Body Mass Index , Coronavirus Infections/physiopathology , Intensive Care Units/statistics & numerical data , Pneumonia, Viral/physiopathology , Adult , Aged , COVID-19 , Coronavirus Infections/virology , Cross-Sectional Studies , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Odds Ratio , Pandemics , Pneumonia, Viral/virology , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL